Quantentechnologie und Supercomputer-die Technologielücke wächst

von Ralf Ostner

Eine disruptive Kerntechnologie der Digitalisierung ist die Quantentechnologie, mit deren Hilfe vor allem die USA und China gerade Quantencomputer, auch Supercomputer entwickeln. Das Moorsche Gesetz besagte, dass die Speicher- und Verarbeitungskapazität eines Mikrochips sich alle 5 Jahre verdoppelt—bei Quantencom,putern, die auf submolekularer Ebene mit Photonen und Lichtgeschwindigkeit operieren, schätzen Experten dies um das Hunderttausend- ja Millionenfache.Im wahrsten Sinne des Wortes auch ein Quantensprung, der dem Begriff Big Data noch einmal eine ganz andere Diomension geben wird. Die EU hat jedoch für die Quantentechnologie für das nächste Jahrzehnt bei 28 Stzaaten gearde einmal 1 Milliarde Euro Forschungsetat vorgesehen, 100 Millionen Euro pro Jahr, was fast nichts ist angesichts der Bedeutung dieser Technologie und zumal wenn man sich die üppigen Forschungsetats für das Kernfusionsprojekt ITER oder die ISS ansieht.In China setzt man enorme Forschungskapüazitäten ein, hat auch schon den Supercomputer Tianhe entwickelt, der seine US-amerikanischen Counterparts in allen wesentlichen Kennziffern schon überrundet hat und erst der Anfang der Erntwicklung ist. Das chinesische Forschungsteam um den Quantenforscher Pan Jianwei ist hierbei weltweit führend. China hat auch schon einen Qzantensatellitten gestartet und plant nun ein Quanteninternetz nebst der weiteren zügigen Entwicklung von Quantencomputern.Nicht nur im zivilen und gesellschaftlichen Bereich werden diese Supercomputer gigantische Umwälzungen bewirken, sondern auch im militärischen Bereich. So kommen John Costella und Elsa Kaniae in ihrer Artikelserie der China Brief der Jamestown Foundation über Chinas Quantentechnologie und deren militärische Implikationen zu folgender Schlußfolgerung:

The Future of Warfare in the Quantum Age?

Looking forward, China aspires to lead the coming second quantum revolution and may possess the potential to leapfrog the U.S. in this critical technological domain (PLA Daily, August 18). According to An Weiping, as the information age is undergoing a “leap” toward the “quantum information age,” quantum is considered the “forward position” for a great power’s comprehensive national power, scientific level, and strategic contests of military power (PLA Daily, September 27). China’s concentrated pursuit of quantum technologies could have much more far-reaching impacts than the asymmetric approach to defense that has characterized China’s strategic posture thus far, with its focus on “assassin’s mace” (杀手锏) programs since the 1990s.

These quantum ambitions seemingly constitute an evolution of the PLA’s traditional asymmetric strategy to one that attempts to offset U.S. technological superiority. The employment of quantum communications, computing, and perhaps even radar may radically alter the rules of the game on the future battlefield. These technologies could neutralize the technological advantages associated with today’s information-centric ways of war, epitomized by the U.S. model, which has relied upon a sophisticated global intelligence apparatus, military satellite networks, and stealth capabilities. For China, the successful development of even one or two of these quantum technologies might ultimately enable an “offset” of its own, which could decisively change the future strategic balance.“

In seinem neuen Buch „In the Shadow of the American Century: The Rise and Decline of US global power“ streicht der Autor Alfred W. McCoy neben anderen Indikatoren für einen relativen Niedergang der US-macht auch die Bedeutung der Supercomputer und Quantentechnologie heraus:

„Some telltale numbers suggest the nature of the future great power competition between Washington and Beijing that could determine the course of the twenty-first century. In April 2015, for instance, the Department of Agriculture reported that the U.S. economy would grow by nearly 50% over the next 15 years, while China’s would expand by 300%, equaling or surpassing America’s around 2030.

Similarly, in the critical race for worldwide patents, American leadership in technological innovation is clearly on the wane. In 2008, the United States still held the number two spot behind Japan in patent applications with 232,000. China was, however, closing in fast at 195,000, thanks to a blistering 400% increase since 2000. By 2014, China actually took the lead in this critical category with 801,000 patents, nearly half the world’s total, compared to just 285,000 for the Americans.

With supercomputing now critical for everything from code breaking to consumer products, China’s Defense Ministry outpaced the Pentagon for the first time in 2010, launching the world’s fastest supercomputer, the Tianhe-1A. For the next six years, Beijing produced the fastest machine and last year finally won in a way that couldn’t be more crucial: with a supercomputer that had microprocessor chips made in China. By then, it also had the most supercomputers with 167 compared to 165 for the United States and only 29 for Japan.

Over the longer term, the American education system, that critical source of future scientists and innovators, has been falling behind its competitors. In 2012, the Organization for Economic Cooperation and Development tested half a million 15-year-olds worldwide. Those in Shanghai came in first in math and science, while those in Massachusetts, “a strong-performing U.S. state,” placed 20th in science and 27th in math. By 2015, America’s standing had declined to 25th in science and 39th in math.

But why, you might ask, should anybody care about a bunch of 15-year-olds with backpacks, braces, and attitude? Because by 2030, they will be the mid-career scientists and engineers determining whose computers survive a cyber attack, whose satellites evade a missile strike, and whose economy has the next best thing.“

In einem Szenario eines sinoamerikanischen Krieges malt er dann Chinas Cyberkriegsführung aus:

At the stroke of midnight on Black Friday, as cyber-shoppers storm the portals of Best Buy for deep discounts on the latest consumer electronics from Bangladesh, Navy personnel staffing the Space Surveillance Telescope at Exmouth, Western Australia, choke on their coffees as their panoramic screens of the southern sky suddenly blip to black. Thousands of miles away at the U.S. CyberCommand’s operations center in Texas, Air Force technicians detect malicious binaries that, though hacked anonymously into American weapons systems worldwide, show the distinctive digital fingerprints of China’s People’s Liberation Army.

In what historians will later call the “Battle of Binaries,” CyberCom’s supercomputers launch their killer counter-codes. While a few of China’s provincial servers do lose routine administrative data, Beijing’s quantum satellite system, equipped with super-secure photon transmission, proves impervious to hacking. Meanwhile, an armada of bigger, faster supercomputers slaved to Shanghai’s cyberwarfare Unit 61398 blasts back with impenetrable logarithms of unprecedented subtlety and sophistication, slipping into the U.S. satellite system through its antiquated microwave signals.

The first overt strike is one nobody at the Pentagon predicted. Flying at 60,000 feet above the South China Sea, several U.S. carrier-based MQ-25 Stingray drones, infected by Chinese “malware,” suddenly fire all the pods beneath their enormous delta wingspans, sending dozens of lethal missiles plunging harmlessly into the ocean, effectively disarming those formidable weapons.

Determined to fight fire with fire, the White House authorizes a retaliatory strike. Confident their satellite system is impenetrable, Air Force commanders in California transmit robotic codes to a flotilla of X-37B space drones, orbiting 250 miles above the Earth, to launch their Triple Terminator missiles at several of China’s communication satellites. There is zero response.

In near panic, the Navy orders its Zumwalt-class destroyers to fire their RIM-174 killer missiles at seven Chinese satellites in nearby geostationary orbits. The launch codes suddenly prove inoperative.

As Beijing’s viruses spread uncontrollably through the U.S. satellite architecture, the country’s second-rate supercomputers fail to crack the Chinese malware’s devilishly complex code. With stunning speed, GPS signals crucial to the navigation of American ships and aircraft worldwide are compromised.“


Die EU scheint wie schon bei der gesamten Digitalisierung auch hier einmal wieder wichtige Entwicklungen zu verschlafen. Militärisch bedeutet dies auch, dass die Technologielücke zwischen den USA und der EU in weiteren wichtigen technologischen Entwicklungen weiter zu nehmen wird und China in vielen Spaten scheinbar inzwischen selbst die USA abhängt.Bezeichnend war für mich zu erfahren, dass der ehemalige Verkehrs- und Digitalisierungsminister Dobrindt nicht einmal weiß, was ein Quantencomputer ist. Die Trennung beider Resorts ist nötig, es braucht wie von der FDP gefordert ein eigenes Digitalisierungsministerium und desweiteren umfangreiche EU-Forschungsetats für Quantentechnologie und Quantencomputer. Wie man dem Bayernplan der CSU entnehmen kann, hält man die Breitbandtechnologie für die ultimo ratio, wo doch in China demnächst das erste Quanteninternetz gebaut wird. Bin ich selbst zwar kein digital native, so scheint die ältere Politikergeneration erst recht wenig Ahnung bezüglich der Digitalisierung und der ihr zugrundeliegenden Technologien zu haben.


Die Kommentarfunktion ist deaktiviert.