Militärtechnologie: Statt Star Wars und EMP nun DEW

Militärtechnologie: Statt Star Wars und EMP nun DEW

Nachdem nun schon Iron Beam der Israelis als Laserversion von Iron Dome für erste Schlagzeilen sorgte, sodass bei der Airshow in Paris im Juni 2023 schon Russen, Chinesen und andere die israelischen Stände als Kundschafter des Friedens umrundeten, ob denn in dieser Hinsicht schon Neues zu erfahren wäre, legten die Briten nun diese Woche mit dem Test ihres Dragon Fire Laserabwehrsystems nach.

AIRSHOW IN PARIS 2023 AND THE FIGHT FOR AIR SUPERIORITY

Airshow in Paris 2023 and the fight for air superiority – Global Review (global-review.info)

Während GB sein Lasersystem  scheinbar mehr mit Einsparpotentialen bei Munition vermarkten will, was ja auch ein Thema angesichts nicht mehr nachkommenden Munitionsproduktion der NATO ist, sind da die Israelis eben auch daran interessiert in Hinblick auf den Iron Bea als Konkurrenten. Zumal sie Deutschland im Austausch für Patriots ja auch nur alte konventionelle Raketenabwehrsystem für Scholzens europäischen Luftabwehrschirm lieferten, zumal Frankreich sich nicht an diesem beteiligen will und da auch seine eigenen Waffensysteme diskriminiert sieht. Jedenfalls ist es auch möglich, dass Politico Liz Trussens Bemühungen , britische Waffenexporte nach China zu fördern nun geleakt hat, da ja die KP China wohl auch an den neuen Dragon Fire interessiert sein dürfte. So berichtet die Jerusalem Post auch:

“UK Defense Ministry reveals new DragonFire military laser

Defense Secretary Grant Shapp said, „This type of cutting-edge weaponry has the potential to [revolutionize] the battlespace by reducing the reliance on expensive ammunition“

UK Defense Ministry reveals new DragonFire military laser – The Jerusalem Post (jpost.com)

Was hingegen das israelische Iron Beam kann und wo seine Stärken und Vorteile liegen , erklärt uns das vielgeschmähte GEZ- ÖR- ZDF recht kurz und kompakt, vielliecht auch in der Absicht die zivilen Strukturpazifistendeutschen da ein wenig auf Zeitenwende einzustimmen und uchetwas für MIlitärtechnologie zu interessieren:

Schutz für Israel:Was kann die neue Laserwaffe Iron Beam?

von Sophia Diesler

13.12.2023 | 14:29

|

Mit dem Iron Dome wehrt Israel seit Jahren Raketen aus Gaza ab – aber nicht alle. Beim Versuch, die Lücken im Schutz zu schließen, steht eine neue Laserwaffe im Fokus: Iron Beam.

Was ist Iron Beam?

Iron Beam ist ein Hochleistungslaser-Waffensystem zur Abwehr feindlicher Drohnen, Artillerie- und Mörsergranaten sowie Raketen. Es soll Israels mehrschichtige Luftverteidigung im Nahost-Konflikt effizienter und zuverlässiger machen.

Die Lasereinheit kann – montiert auf einem Lkw – in andere Systeme integriert werden und so beispielsweise den Iron Dome ergänzen und das Land zusätzlich schützen.

Israels "Eiserner Strahl" ist ein Hochleistungslaser zur Abwehr von beispielsweise Raketen und Drohnen. Das System ist noch in der Entwicklung. Der Laserstrahl überträgt elektromagnetische Energie auf sein Ziel, das schmilzt oder explodiert. Die Reichweite beträgt einige hundert Meter bis circa zehn Kilometer. Der Laser kann unbegrenzt schießen, solange eine Stromversorgung besteht. Er hat eine Leistung von 100 kW.

Wie ist der Stand der Entwicklung?

Im Februar 2014 stellte das israelische Verteidigungsunternehmen Rafael Advanced Defense Systems den Iron Beam erstmals offiziell vor. Seitdem wurden immer wieder Tests durchgeführt – zuletzt erfolgreich im April 2022.
Die Laser-Abwehrwaffe wird noch vom Militär erprobt, soll aber laut Hersteller innerhalb des nächsten Jahres einsatzbereit sein. Angesichts des Krieges zwischen Israel und der Hamas wird jedoch spekuliert, ob der hochmoderne Laser sogar schon früher in Dienst gehen könnte.

Das Bild zeigt das israelische Raketenabwehrsystem Iron Beam, das seinen Laserstrahl in den schwarzen Nachthimmel schießt.

Soll Israels Raketenabwehr unterstützen: das Lasersystem Iron Beam.

Quelle: dpa/Israeli Ministry of Defense’s Spokesperson’s Office


Wie funktioniert das System?

Iron Beam kann Bedrohungen in einer Entfernung von einigen hundert Metern bis circa zehn Kilometern abwehren. Wird ein feindliches Objekt – etwa eine Drohne – erkannt und der Abschussbefehl gegeben, erreicht der Laserstrahl mit Lichtgeschwindigkeit sein Ziel und bringt es dann zum Absturz.
Dies geschieht, indem der Laserstrahl elektromagnetische Energie überträgt. Die Folge: Das Material der Drohne erhitzt sich und schmilzt. Trifft der Laserstrahl den Treibstofftank eines Objekts, explodiert dieser nach wenigen Sekunden.

Mit einer Leistung von 100 Kilowatt verbraucht die Abwehrwaffe pro Stunde etwa so viel Strom wie eine einzelne Person in Deutschland in einem ganzen Monat.

ARCHIV, Israel: Eine Arrow 3 - Rakete wird an einem israelischen Militärstützpunkt in die Luft geschossen.

Um Deutschland vor ballistischen Raketenangriffen zu schützen, wird das Raketenabwehrsystem Arrow 3 aus Israel erworben.17.08.2023 | 2:39 min


Welche Schwächen hat das System?

Zum einen ist die Reichweite des Iron-Beam-Systems sehr gering, sodass Israel viele dieser Lasereinheiten benötigt, um sich effektiv vor Angriffen zu schützen.

Dass die Abwehrwaffe nur auf kurze Distanz effektiv arbeitet, liegt vor allem daran, dass die Energie des Laserstrahls mit zunehmender Entfernung schwindet: Er gibt sie in Form von Wärme an die Umgebungsluft ab und verliert so nach und nach seine zerstörerische Kraft.

Um auch Ziele in großer Entfernung abwehren zu können, müsste der Laser deshalb eine noch höhere Leistung besitzen, betont Militärexperte Gustav Gressel:

Desto weiter ich schießen will, desto größer wird das Problem der atmosphärischen Störungen … und natürlich wird meine Energieanforderung dementsprechend größer.

Gustav Gressel, Militärexperte

Auch das Wetter bereitet dem Luftverteidigungssystem Schwierigkeiten: Bei Regen, Nebel oder Smog funktioniert es nicht richtig. Denn Feuchtigkeit und Luftverunreinigungen absorbieren oder streuen die Energie des Laserstrahls – er wird schwächer und kann sein Ziel womöglich nicht zerstören.

Ein weiteres Problem ist die Zeit, die Iron Beam benötigt, um ein Objekt zu zerstören. Der Laserstrahl muss mehrere Sekunden lang Energie in sein Ziel hineinpumpen – abhängig von dessen Größe. Bewegt sich die Angriffswaffe zusätzlich mit hoher Geschwindigkeit, wie eine Rakete, wird es für den Laser schwierig, sie lange genug zu verfolgen, um sie unschädlich zu machen.

Greifen mehrere Objekte gleichzeitig an, kann der Laser sie zudem nur nacheinander abwehren. Bei massivem Beschuss würde das System somit schnell an seine Grenzen kommen.

Wie wird das Potenzial von Laserwaffen eingeschätzt?

Dennoch hat die Laser-Abwehrwaffe einige Vorteile gegenüber raketenbasierten Verteidigungssystemen. So fasst der Iron-Dome-Raketenwerfer maximal 20 Tamir-Abfangraketen, während Iron Beam unbegrenzt schießen kann – zumindest solange das System mit Strom versorgt wird.

Der Laser hat hier den Vorteil, dass er im Grunde nur Energie braucht. Solange er im Strom steckt, kann er wiederholt schießen.

Gustav Gressel, Militärexperte

Das israelische Raketenabwehrsystem kann gegnerische Raketen in bis zu 70 km Entfernung zerstören. Es bildet eine schützende "Eisenkuppel" über ein Gebiet von ca. 150 Quadratkilometern. Die Radareinheit erkennt gegnerische Raketen und erfasst Geschwindigkeit und Flugbahn. Die Kontrolleinheit berechnet die Flugbahn. Der Raketenwerfer startet die Abwehrrakete. Die Abwehrrakete zerstört den feindlichen Flugkörper.

Auch in Bezug auf die Kosten steht Iron Beam besser da. Für einen Abwehrschuss des Iron Dome werden sie auf etwa 50.000 bis 150.000 US-Dollar geschätzt. Laut dem ehemaligen Ministerpräsidenten von Israel, Naftali Bennet, kostet ein „Schuss“ mit Iron Beam dagegen nur 3,50 US-Dollar. Gemeint sind damit die Stromkosten für den Betrieb des Lasers.

Das größte Potenzial von Hochenergie-Laserwaffen sieht Militärexperte Gustav Gressel in naher Zukunft bei der Abwehr von kleinen Drohnen. Bei Objekten, die sich sehr schnell und in größerer Entfernung bewegen – etwa Kampfjets – dürften Laserwaffen aber auf Jahrzehnte an ihre Grenzen stoßen, so Gressel.

Schutz für Israel: Was kann die neue Laserwaffe Iron Beam? – ZDFheute

Die NZZ bremst den futuristischen Hype in die angeblich neue Lasershow und Wunderwaffe DEW dann doch wieder etwas, sei es jetzt für alle, die da die Lösung aller finanziellen, technologischen oder Munitionsprobleme sehen oder doch noch mal wiederan den ultmativen game changer und die Wunderwaffe für den Ukrainekrieg.

„Schnell, billig und präzise – ist der Laser die Wunderwaffe der Zukunft?

Grossbritannien testet erfolgreich Laserwaffen gegen Luftziele, Israel entwickelt den Iron Beam. Der Laser weckt Hoffnungen auf eine Revolution der Gefechtsführung, doch das militärische Potenzial ist begrenzt.

Ein Dragon-Fire-Laser bekämpft in einem Test ein fliegendes Objekt.

Am 9. Januar kurz nach 21 Uhr tritt auf dem britischen Zerstörer HMS «Diamond» im Roten Meer der Ernstfall ein. Aus der von der Huthi-Miliz kontrollierten jemenitischen Hafenstadt Hudaida nehmen 18 Drohnen aus iranischer Produktion Kurs auf Kriegsschiffe und kommerzielle Frachter. Die britische Marine schiesst mehrere Raketen vom Typ Sea-Viper. Eine Sea-Viper kostet rund 1 Million Pfund (1,1 Millionen Franken), während sich der Preis der unbemannten Flugkörper der Huthi auf einige zehntausend Franken pro Stück beläuft. Dennoch müssen die Briten teilweise auch noch auf herkömmliche Feuerwaffen setzen, um die agilen Drohnen endgültig aus dem Verkehr zu ziehen.

11 Franken pro Laserschuss

Umso bedeutender ist vor diesem Hintergrund, was sich gut eine Woche später auf einem militärischen Trainingsgelände an der schottischen Nordwestküste abspielt: Erstmals gelingt es den britischen Streitkräften in einem Test, erfolgreich einen Hochleistungsschuss einer Laserwaffe gegen Luftziele abzufeuern. Das Verteidigungsministerium in London teilt mit, dass die potenzielle Wunderwaffe namens Dragon-Fire in Zukunft nicht nur die Präzision der Streitkräfte verbessern, sondern auch die Abhängigkeit von teurer Munition wie im Roten Meer erheblich verringern könne.

Neu sind solche Hoffnungen nicht: Die Entwicklung von Laserwaffen wird bereits seit Jahrzehnten vorangetrieben, doch steckt sie immer noch in einem experimentellen Stadium. Die Zerstörungswirkung basiert auf dem Prinzip, dass über einen gebündelten Lichtstrahl eine grosse Energiemenge auf ein feindliches Objekt gerichtet wird.

Die durch den Lichtstrahl transportierte Hitze verbrennt den anvisierten Gegenstand oder bringt ihn zur Explosion. Ist das feindliche Objekt durch Radar entdeckt und die Laserkanone auf das Ziel gerichtet, wird das Objekt mit Lichtgeschwindigkeit bekämpft – also ohne den zeitlichen Verzug, den es gäbe, wenn eine Rakete darauf abgeschossen würde.

Aus militärischer Sicht hat die Bekämpfung mit Laserwaffen neben der schnelleren Wirkung im Ziel weitere Vorteile. Es gibt kein Problem mit ungenügenden Munitionsvorräten. Solange das System mit Strom versorgt wird, kann es unbegrenzt «schiessen». Zudem ist der Betrieb der Waffe viel günstiger als bei der Bekämpfung mit herkömmlicher Munition. Wird Dragon-Fire während zehn Sekunden abgefeuert, wird laut britischen Angaben etwa gleich viel Energie verbraucht, wie wenn man einen Heizkörper eine Stunde lang einsetzt.

Ein «Laser-Schuss» soll umgerechnet weniger als 11 Franken kosten. Daher glaubt der britische Verteidigungsminister Grant Shapps, dass die Laserwaffe die Gefechtsführung «revolutionieren» könne, indem Kosten eingespart würden und sich das Risiko von Kollateralschäden verringerte.

«Dragon Fire» und «Iron Beam»: Sind Laserwaffen die Wunderwaffen der Zukunft? (nzz.ch)

RAND gibt in einem Artikel .einen ganz guten Überblick über die Entwicklung von Laserwaffen oder umfassender  Directed Energy Weapons (DEW)

Nachdem die USA in den 50ern mal mit einer Nuklearzündung in erdnahem Orbit einen desaströsen EMP-Versuch starteten, der nicht gelenkte, sondern eben massenhaft  ungelenkte Energie freisetzte ,die auch eigene Anlagen beschädigten hat das auch keiner mehr wiederholt, weder die Sowjetunion noch ein Nachfolgestaat, bis China mit dem Test einer ASAT-Waffe 2007 im Weltraum da auch ein sehr riskantes Spiel wagte, das es dann auch nicht mehr wiederholte. Ob das ein sehr riskanter Warnschuß an die USA war, eine weitere Militarisierung des Weltraums und kostspieliges Wettrüste zu unterlassen oder die Chinesen die möglichen Folgen ihres Tests unterschätzten, weil sie sich als MINT- Pisa- Weltmeister wähnen, ist bis heute nicht geklärt.

In Reagans Zeiten propagierten die USA dann SDI, auch Star Wars genannt mit der völlig illusorischen Gigantomievorstellung mittels eines Riesennetzes weltraumstationierter Laserwaffen oder Solarspiegeln die Tausenden von sowjetischen ICBMs herunterholen zu können. Sowohl finanziell wie auch technologisch damals gar nicht machbar. Aber scheinbar glaubte man damals noch an riesige Quantensprünge in der  Lasertechnologie. Als ich in den 80ern bei der Medizinfirma meines, Onkels HP Medica in Augsburg arbeitete, wurden neben Herzklappen auch Medizinlaser sehr gefragt. Damals vor allem für Augen-OPs, wobei Russland sogar eine Art Pionier der laserbasierten Augen-OPs und zeitweilig auch eine Art Mekka für Medizintourismus in dieser Zeit kurzweilig wurde. Jedoch war die Qualität der russischen Laser recht rückständig, zumal mit dem Aufkommen des Silicon Valley und der ganzen Minitairsierung, Elektronisierung , Halbleiterchip- und Computerentwicklung samt rasch fallenden Herstellungskosten die USA da von der Waffentechnologie bis hin zu Computergraphiken inklusive 3 D-Visualisierung (auch der Kartographie wie ich damals als Student der Wirtschaftsgeographie erleben dürfte, was sich dann aber auch bei Cruise Missiles-Navigation bemerkbar machte) riesige Vorsprünge hinlegten und das Packmanzeitalter beendeten., Da kamen dann auch Diskussionen auf, ob  auch  Medizinlaser unter die Kategorien des  Dual-Use der COMECON-Sanktionsliste setzen fielen.

In dem damaligen Besteller des britischen Generals Sir John Hacket unter Mitautorenschaft von anderen NATO- Generälen wie etwa dem deutsche General Kielmannsegg des Titels „Der Dritte Weltkrieg“, der natürlich mit einem Sieg der NATO über die Sowjetunion als Happy End ausging, betonte Sir Hacket ud seine wackeren Mitstreiter auch dass dieser ein „elektronischer Krieg“ und kein Atomkrieg sein werde.

Die Sowjetunion und die DDR versuchten auch verzweifelt eigene Halbleiterchips zu entwickeln, was aber ein Fehlschlag war, den man versuchte mittels Wirtschaftsspionage und, Osthandel zu kompensieren. So erzählte es mir auch mal ein  in Riegsee lebender Osthändler, der da zentral bei dem DDR-Kombinat Robotron und anderen VEBs engagiert war. Doch alles, was da legal geliefert oder auf anderen Wegen von Mielke und Schalck-Golodowski herbeigebracht wurde, führte nur zu der einmaligen Produktion eines  technologischen Neandertalerchips, der bei seiner Präsentation durch Honecker in der Aktuellen Kamera damals eher zur allgemeinen Belustigung im Westen beitrug. Mielke und Schalck-Golodowski überlegten auch mal die Beschaffung eines westlichen Computers für die Stasizentrale in der Ostberliner Normannenstraße, nahmen davon dann aber Abstand, weil sie befürchteten, dass CIA oder BND da Maleware oder anderes vielleicht noch ausgetüfteltes einbauen und mitliefern könnten, weswegen der Paternoster nahe Mielkes Büro noch so das technologisch Fortschrittlichste blieb im gewünschten Orwell-Ministerium des MfS und ehemaligen Rotfrontbund- und Spanienkämpfers. der sich technologisch maximal mit Pistolen, Kalaschnikows, Minikameras, Abhörmikrofonen , getunten Trabis und toten Briekästen auskannte, ja bestenfalls noch mit Abhörstationen, wie sie etwa der Westen in Bad Aibling unterhielt. 1984 war ja auch Orwell und Big Brother Jahr. Zumal der KGB ja auch in der deutschen Hackerszene fischte, wie der Film „23“ sehr gut die damalige Zeit schildert.

Scheinbar wurde man in der Sowjetunion immer verzweifelter angesichts des eigenen rasant zunehmenden wirtschaftlichen und technologischen Rückstands, dass man dem Westen alles zutraute, scheinbar auch Star Wars, denn ansonsten ist nicht erklärlich, wie man dieses utopische Projekt überhaupt ernsthaft als reale Bedrohung wahrnehmen konnte, man neben sinkenden Herstellungskoste infolge von Massenfertigung auch an Moore´s Law in Überlichtgeschwindigkeit glaubte. Die militärtechnologisch unbedarfte Friedensbewegung und der SPIEGEL hielten dann Reagan auch nicht nur auf Titelblättern als einen realen Darth Vader eines Todesplaneten und die Star Wars- Phantasien für real, zumal die Grnen damals ja noch alle Technik und auch PCs im Gegensatz zum Chaos Computerclub ablehnte, der da wie die psychodelischen Cyberhippies des Silicon Valleys und San Franciscos in einen globalen Cyber- Sommer of Love glaubten, wie dies Barlow dann nochmals auf dem WEF in Davos angesichts des Internets in einer Erlösungsrede zusammenphantasierte.

Naja, vielleicht hat die CIA hat damals dem KGB auch ordentlich Desinformationen und futuristischen Blaupausen  in Sachen angeblicher Wunderwaffen zugespielt und so richtig damit gemästet (es hieß ja auch mal, daß die Sowjets viele aus den USA geheim besorgte Blaupausen und Konstruktionspläne nicht nachbauten konnten-vielleicht lag es auch nicht daran, daß sie zu doof waren das zu können, sondern es nicht konnten ,weil es gar nicht möglich war und möglicherweise haben die Amis und Casey die Russen auch gehörig verarscht) , die da für Panik auf der Titanic  im Kreml sorgten, zumal dieser ja auch von einer zunehmend wenig technikaffinen schnell wegsterbenden Gerontokratie mit scheinbarer Altersdemenz-und-sklerose regiert wurde, weswegen man scheinbar auf eine Art Jungstar Namens Gorbatschow als letzte Hoffnung der Erneuerung setzte.

Nun gut, heute ist es vor allem ein technologischer Wettlauf zwischen den USA und China um Halbleiterchips, Quantencomputern, Blockchaintechnologie und nun eben auch noch KI und ersten neutralen Interfaces oder nun Musks Biochip, als auch noch Biotechnologie, Nanotechnologie, Gentechnologie dazukommt, weswegen schon Brzezinski damals in seinem Chessboard-Vortrag im Münchner Literaturhaus betonte, dass all seine geopolitischen Prognosen erst einmal ohne Berücksichtigung technologischer Entwicklungen und eines möglichen Posthumanen Zeitalters angestellt werden würden. Ray Kurzwell ,ein Vordenker des Silicon Valleys nannte die zunehmende Verschmelzung von Bio- und Computertechnologie denn auch mal Singularität“ ,die Verschmelzung von Mensch und Maschine in Richtung Cyborgs, wie sie schon in Marvelcomics der 70er Jahre noch als SciFi-Superhelden wie Deathlock rumliegen und dann in Terminator mit Arnold Schwarzeneger in Hollywoodfilmen mit viel Computeranimation auf der Leinwand Einzug hielten. Schwer zu sagen, was da noch alles kommt bei den disruptiven Technologien und ihren Anwendungen, zumal sich diese ja zu beschleunigen und gegenseitig katalysieren scheinen.

Aber statt Star Wars und EMP, nun die DEWs, die nun mit Dragon Fire und GB, Iron Beam in Israel beben den traditionellen Iron Dome nun als Laserraketenabwehrsysteme getestet werden wie dies die USA und Frankreich schon zu See getestet haben. Dies auch als Vorgeschmack des europäischen und NATO-Luftschutzschildes,  der bisher noch mit konventionellen kinetische Patriots und noch nicht Laserwaffen und anderen DEWs ausgestattet wird. Folgender Artikel von RAND gibt da einen guten Überblick, zudem die ganze Abwehr auf einem 5-Säulenmodell basieren soll. Leider ist in Sachen Asien da wenig zu erfahren.

Directed Energy: The Focus on Laser Weapons Intensifies

COMMENTARY

(The RAND Blog)

DragonFire laser directed energy weapon fires during a trial of the weapon by the UK Ministry of Defense (MOD) at the MOD's Hebrides Range, January, 2024 , photo by UK Ministry of Defence/Open Government Licence

DragonFire laser directed energy weapon fires during a trial of the weapon by the UK Ministry of Defense (MOD) at the MOD’s Hebrides Range, January, 2024

Photo by UK Ministry of Defence/Open Government Licence

by James Black

January 25, 2024

The robotic craft swoops in low, closing on its target. The enemy’s sensors try to get a fix, as the planet surface races past below. In an instant, a beam reaches out from below at the speed of light, the high-powered laser burning through its target. This is not Star Wars: this is Scotland, last week, where the UK Ministry of Defence and its industry partners conducted the first successful firing of their DragonFire laser weapon against an aerial target.

With this trial, the culmination of £100 million of investment to date, the United Kingdom joined other nations racing to develop and deploy what are known in military parlance as directed energy weapons (DEW). Though the technology is yet to mature, the United States has begun to deploy early laser weapons on several of its naval destroyers, as well as testing ground- and air-based versions.

Following the October 7 attacks by Hamas, Israel has sought to expedite development of its own Iron Beam laser weapon to help shoot down incoming rockets and drones, augmenting the kinetic interceptors of its Iron Dome missile defence system. China, Russia, France, India, Turkey, Iran, South Korea, Japan, and others are investing in their own national programmes, with varying degrees of progress.

But why such interest in directed energy weapons, once considered in the realm of science fiction? And how to separate the considerable hype about these futuristic-sounding technologies from their more-nuanced impacts on the real-world battlefields of today and tomorrow?

Bringing Directed Energy Into Focus

Lasers are only one type of DEW, a broad category that encompasses efforts to harness and weaponise different parts of the electromagnetic spectrum. Electronic warfare (EW) has been a growing feature of modern conflict for over a century. Since the advent of radio and subsequent development of radar, militaries have exploited different frequencies for communications and intelligence-gathering purposes. Low-energy lasers have similarly been used for range-finding and targeting, enabling precision weapons to be guided into a target by forces on the ground and reducing the risk of friendly fire or civilian casualties.

Electronic warfare has been a growing feature of modern conflict for over a century.

In the constant race between measure and countermeasure, military powers have also developed jammers, spoofing tools, and other increasingly sophisticated means of conducting electronic attack or using electronic countermeasures to gain a battlefield advantage. This back-and-forth is still playing out today in Ukraine, with both Russian and Ukrainian forces deploying a wide range of EW capabilities as part of their reconnaissance-strike and air defence systems.

Militaries and societies have also become aware of the potential threat from electromagnetic pulses such as those generated through high-altitude detonations of a nuclear warhead. An undirected rather than directed energy weapon, these have fortunately not yet been used in war because they indiscriminately damage all unshielded electronics in a target area and can be confused with—and thus lead to an escalation to—a nuclear exchange.

Building on these trends, technology programmes have sought to make DEW a reality. In the 1980s, the Reagan administration famously sought to develop more-powerful lasers to defend the United States against Soviet missiles as part of the Strategic Defense Initiative. Ultimately, this did not work—a costly and failed effort often derisively dubbed “Star Wars”. Yet after decades of low-power devices being rolled out globally, recent years have seen increasing military investment and technological advances in high-energy lasers (HEL) and high-powered radiofrequency (HPRF) or microwave (HPM) systems.

These emerging categories of weapons are designed for a variety of targets. Emitting a stream of photons, HELs are useful for engaging fast-moving targets within line-of-sight, such as destroying aerial or missile threats to ships, a base, or ground forces. Even at lower power settings, lasers can dazzle the sensitive electro-optical sensors on their targets (or, indeed, the human eye), blinding them and making it harder to manoeuvre safely or carry out their mission. Emitting radiofrequency waves, meanwhile, HPRFs and HPMs are useful for disrupting electronic systems, making them especially useful against military equipment, drones, and robotic systems. Unlike HELs, which focus on one target at a time, HPRFs and HPMs can engage multiple threats within a wide beamwidth simultaneously.

There is thus substantial interest in DEWs to help counter the proliferation of unmanned systems in the air, on land, and at sea, as well as for targeting missiles in-flight or satellites in orbit. The U.S. military and others have also looked at nonlethal DEWs for crowd control, perimeter security, and area denial purposes—for example by inducing a temporary and nondamaging sensation of extreme heat on human skin or using sonic devices to force people to leave an area—though this remains controversial. Beyond military applications, several companies have proposed using ground-based lasers for civil and commercial purposes, such as active debris removal missions to shoot at ’space junk‘ posing a risk to nearby satellites in an increasingly congested low-Earth orbit.

Balancing Benefits, Drawbacks, and Countermeasures

Competing nations are pouring so much investment into DEWs because, if the technology can be matured, such systems hold the potential to tip both the military and economic calculus of modern warfare in their users‘ favour. HEL and HPRF/HPM systems deliver an effect on target at the speed of light, drawing on an energy source rather than traditional munitions. Compared with traditional gun- or missile-based alternatives, these characteristics of DEW promise increased accuracy, speed of engagement, magazine depth, and flexibility to re-task the weapon against a variety of targets.

Currently, DEWs are comparatively large, relying on large power sources and stable platforms such as a ground battery or naval ship. But in future, miniaturised and more-efficient energy storage systems could enable their rollout across all domains—with the U.S. and European next-generation fighter programmes envisaging integrating such weapons into the fighter aircraft of the future. Reducing reliance on kinetic munitions that must be constantly replenished would similarly take pressure off military logistics and industrial production, enabling forward deployed forces to operate for longer without resupply of ammunition, so long as they had access to suitable energy sources.

These military considerations in turn have important cost implications. After its recent DragonFire trial, the UK Ministry of Defence reported that the HEL could hit a target the size of a small coin at a kilometre, and that firing it for 10 seconds used equivalent energy to running a domestic portable heater for an hour—meaning each shot of the laser costs around £10 ($12–13). This stands in stark contrast to the hundreds of thousands, or even millions, of dollars that a sophisticated air defence or missile interceptor can cost. These are currently being expended in large numbers by Israel, Russia, and Ukraine; and by U.S. and UK naval forces deployed to protect commercial shipping from Iran-backed Houthi attacks in the Red Sea.

Munitions production capacity is tightly constrained despite ongoing global efforts to ramp it up. Low-cost drones and rockets have swung the economic calculus of offence and defence in favour of those using large volumes of cheap unmanned systems and munitions to overwhelm more-sophisticated air and missile defences. Maturing DEW technologies therefore promise more cost-efficient ways of engaging a variety of threats, especially these rockets and drones.

At the same time, DEWs are far from a panacea. Such futuristic weapons are the subject of considerable technology hype, and there remain technical, financial, policy, and doctrinal barriers to their successful maturation and deployment at scale on the battlefield.

Physical limitations include the need for HELs to have a clear line of sight to the target. This limits the range of many DEWs and means that optimal performance demands a stable platform, the ability to remain focused on a moving target for sufficient time to deliver effect, and no cloud, rain, smoke, or manmade countermeasures. Electronic systems can also be hardened against attack by HPRFs or HPMs. Conversely, attackers can hope to overwhelm DEWs both through technical means and use of certain tactics—for instance, by forcing defenders to deal with large numbers of different threat vectors at once, or by going after the command and control or sensor systems tasking the DEWs. Users of DEWs must also be mindful of the possibility of collateral damage (e.g., dazzling or damaging a friendly satellite behind an in-atmosphere target), and of safety, ethical, and legal concerns, though such considerations are of course true for kinetic weapons. And while there have been considerable advances in the battery and supercapacitor technologies that power any DEW, generating, storing, transmitting, and using large amounts of energy in austere battlefield conditions remains both a technical and logistical challenge.

Building Towards Integrated Air and Missile Defence

Given these mixed prospects, DEWs are far from a ’silver bullet‘. But, if these technologies continue to progress, they can make a vital and urgently needed contribution within a wider toolkit, helping mitigate the increasing air and missile threat to military forces and civilian targets.

To fulfil this promise, DEWs need to be further developed to become more mobile, reliable, and affordable. This should be combined with all the other lines of development that make up a mature military capability, including appropriate infrastructure, logistics, doctrine, and training. DEWs should then be layered alongside other counter-rocket, artillery, mortar, and air and missile defence systems, including a mix of different sensors, guns, missiles, and platforms, as part of what the UK military calls ‚integrated air and missile defence‘. This enables a holistic approach to dealing with different threats from cheap drones to sophisticated aircraft or cruise and ballistic missiles, at varying altitudes, speeds, and levels of cost.

Directed energy weapons need to be further developed to become more mobile, reliable, and affordable.

Integrated air and missile defence has emerged as a key priority for NATO and other powers, with alarming shortfalls in the capacity of modern air and missile defences and the associated production lines exposed by the fighting between Russia and Ukraine since February 2022. Addressing this challenge requires more than just flashy new technical solutions such as DEWs—the United Kingdom’s Missile Defence Centre, for instance, talks of missile defence across five pillars, encompassing nonproliferation, deterrence, counter force, active defence, and passive defence measures. This means tackling threats both ‚left and right of launch‘: going after the enemy’s ability and willingness to launch an attack in the first place, or, if that fails, seeking to intercept, deny, or mitigate the effects of an attempted strike once it has been launched.

Still, DEWs offer a potential new layer to this concept and a more cost-efficient means of dealing with fast-proliferating threats. This would free more traditional, kinetic weapons for other purposes, and relieve some of the pressure on the West’s already-stretched munitions production lines. This change could directly benefit operations of the kind currently underway to defend Ukraine or the Red Sea. From the successful DragonFire trial in the United Kingdom to recent U.S. and French naval deployments of shipborne DEWs, it is positive to see such energy being directed at directed energy. Hard-fought progress is being made by NATO Allies in this continuing race for technological advantage.


James Black is assistant director of defence and security at RAND Europe, the European arm of RAND, a nonprofit research institute that works to improve policy and decisionmaking.

Commentary gives RAND researchers a platform to convey insights based on their professional expertise and often on their peer-reviewed research and analysis.

Directed Energy: The Focus on Laser Weapons Intensifies | RAND

Wie gesagt, ist der RAND- Blick bei dem internationalen Rüstungstechnologiewettlauf hier noch sehr eurozentrisch. Einen Überblick über den offiziellen und bekannten Stand der asiatischen Staaten und deren Pläne von 2021 hat auch mal die Defense News jetzt veröffentlicht, wobei da einige Staaten angesichts ihres Herkunfslands Mitgliedschaft bei den Five Eyes doch eher Informationen zurückhalten könnten. Bei dem Asian Review der Defense News scheint man in Asien vor allem noch auf Hypersonicwaffen zu setzen, sind bisher keine nennenswerten Entwicklungen oder Durchbrüche zu vermelden. ABer der Artikel ist von 2021 und die Entwwicklung ging seitdem weiter. Auch wird noch die Railgun da desöfteren genannt, aber es fragt sich, ob die sich wirklich durchsetzt. Geringe Mobilität, dazu benötigte Infrastruktur, Riesengröße erinnern eher an deutsche Artilleriemonster wie Die Dicke Berta oder Der Eiserne Gustav, wie auch da und bei den ganzen DEW noch nicht näher erläutert wird, wie die Energiemengen erzeugt werden sollen oder ob das dann doch wieder sehr aufwendig wird.

Hypersonic and directed-energy weapons: Who has them, and who’s winning the race in the Asia-Pacific?

By Mike Yeo, Nigel Pittaway, Usman Ansari, Vivek Raghuvanshi and Chris Martin

 Mar 15, 2021

MELBOURNE, Australia, ISLAMABAD, NEW DELHI, and WASHINGTON — A number of countries in the Asia-Pacific region are caught up in the global hypersonic and directed-energy weapons race, with these regional powers having either developed or publicly stated intentions to develop such technology.

Defense News has contacted regional government and military officials, businesses, and analysts to find out who is keeping pace in the worldwide contest.

China

Chinese military vehicles carry DF-17 ballistic missiles during a parade in Beijing on Oct. 1, 2019. (Mark Schiefelbein/AP)

Unsurprisingly, China is one of those countries that is focused on both fields. It is widely acknowledged to be the leader in the field of hypersonic systems, having already fielded such weapons in the form of the DF-17 hypersonic glide vehicle.

The DF-17 HGV made its first public appearance at a military parade held in China’s capital Beijing in late 2019. The weapon appears to use a standard ballistic missile booster in its first stage for the initial boost of a glide vehicle, which is used to attack a target following reentry.

The DF-17s at the parade were mounted on a wheeled, five-axle transporter-erector-launcher. This makes the system road-mobile like much of the ballistic missile arsenal of China’s People’s Liberation Army. This could potentially complicate any attempt by an adversary to strike the systems prior to launch.

U.S. government sources have said China carried out several tests of HGVs, including the DF-17, since 2014. The DF-17 is the first system of its type known to be operational in the world, although several other nations including the U.S. are developing similar systems.

In addition, China is also believed to be developing an air-launched HGV, with a video briefly posted on Chinese social media in October last year showing a People’s Liberation Army Air Force Xi’an H-6N bomber landing at an air base carrying what appeared to be a boost-glide HGV — or at least a mock-up used for carriage and other flight tests.

Pentagon officials had long suspected China was developing an air-launched ballistic missile for carriage onboard H-6 bombers, although specific details were unknown until the emergence of the video. It’s still unclear, however, if this air-launched weapon is the one referenced by the Pentagon, or if China is developing another system with a more conventional warhead.

The deployment of road-mobile and air-launched HGVs broadens China’s ability to hold an adversary’s targets at risk, giving missile defenses another threat vector to think about in addition to China’s existing arsenal of ballistic, cruise, land-attack and anti-ship missiles.

The Pentagon has also claimed China carried out several tests of rail guns on land. These use electromagnetic forces to launch high velocity projectiles by means of a sliding armature that is accelerated along a pair of conductive rails. While the projectiles do not contain explosives like one would find on hypersonic missiles, the projectile’s extremely high speed inflict significant damage.

It is also believed a PLA Navy amphibious ship, photographed on several occasions mounting a large turret and gun barrel on its bow, is the test bed of a naval rail gun. The ship made several voyages believed to be for tests, although this could not be independently verified and its development status is unclear.

China has also made efforts in developing directed-energy weapons, with state media and manufacturers releasing images and videos of hand-held and vehicle-mounted laser systems. These include a hand-held destructive laser weapon offered for domestic law enforcement — ostensibly crowd control — although its designers say when set to maximum power, the laser can instantly scar human skin and tissue. It can also reportedly ignite clothing, knock a small drone out of the sky or blow up a fuel tank.

One Chinese academic has claimed the PLA used microwave weapons to incapacitate Indian troops during last year’s standoff over part of the two countries’ disputed border, although these claims have not been independently verified.

India

India on Sept. 7 conducted a test of a fully indigenous hypersonic technology demonstrator vehicle. (Indian Press Information Bureau)

India is also pursuing both hypersonic and directed-energy weapons. The second edition of India’s “Technology Perspective and Capability Roadmap,” released in 2018 by the Ministry of Defence, previewed more than 200 pieces of equipment envisaged for induction in the military in the late 2020s. Among the list of projects that industry was encouraged to pursue was a “Tactical High Energy Laser System” for the Army and Air Force.

The ministry foresaw a high mobility vehicle-based laser weapon system able to “cause physical damage/destruction to [electronic warfare] systems, communication systems and non communication systems/radars and their antennas.” Eventually, the weapon should reach a minimum range of 20 kilometers, have a target-locking capability, and be able to serve in an anti-satellite role from land- and air-based platforms.

An official review of the MoD’s affairs from 2020 cited an anti-drone system made by the government’s Defence Research and Development Organisation. The Jan. 1, 2021, news release said the system was deployed for Prime Minister Narendra Modi’s security as he addressed the nation for its 74th Independence Day.

“It can bring down micro drones through either jamming of command and control links or by damaging the drones through laser-based Directed Energy Weapon,” according to the release.

The DRDO is currently requesting $100 million from the MoD for the 2021-2022 budget to produce a high-power laser weapon.

The classified project, dubbed DURGA II (Directionally Unrestricted Ray-Gun Array), will see the Indian Army receive the 100-kilowatt, lightweight directed-energy system, a service official told Defense News.

A senior DRDO scientist said on condition of anonymity that the DURGA II program is currently in the concept stage. He added that the organization is developing and improving various laser-generation techniques using solid state, fiber and chemical lasers for defensive and offensive use.

The scientist also said DURGA II is to be integrated with land-, sea- and air-based platforms.

Another DRDO scientist said 50 defense scientists have been charged with developing new directed-energy weapons. The organization also aims to start work on non-nuclear electromagnetic pulse technology, he added.

DRDO laboratories engaged in the development of directed-energy technology include the Laser Science and Technology Centre, the Defence Electronics Research Laboratory, the Defence Research and Development Laboratory, and the Centre for High Energy Systems and Sciences.

The Laser Science and Technology Centre is the lead laboratory in this effort, and it is currently engaged in the development of multiple laser technologies using chemical oxygen iodine lasers and high-power fiber lasers. The center has so far made a 25-kilowatt laser that can target a ballistic missile during its terminal phase at a maximum distance of 5 kilometers.

In addition, the DRDO established a firing range at its Terminal Ballistics Research Laboratory at Ramgarh in Haryana state, near New Delhi.

Meanwhile, the country’s focus on hypersonic technology has seen the creation of a wind tunnel for testing in Hyderabad and its first successful test of a fully indigenous hypersonic technology demonstrator vehicle powered by an air-breathing scramjet engine. The MoD announced the Sept. 7, 2020, flight test that month.

The demo vehicle was indigenously developed by the DRDO, and it has the ability to fly at six times the speed of sound, according to defense scientists in the country.

The MoD said the hypersonic cruise vehicle was launched using a solid rocket motor, which took it to an altitude of 30 kilometers. Then the cruise vehicle separated from the launch vehicle and the air intake opened as planned, the ministry added.

“The successful demonstration proved several critical technologies including aerodynamic configuration for hypersonic manoeuvers, the use of scramjet propulsion for ignition and sustained combustion at hypersonic flow, thermo-structural characterisation of high-temperature materials, separation mechanism at hypersonic velocities, etc.,” DRDO said in a statement.

A top DRDO scientist told Defense News that the vehicle will be used to launch both hypersonic and long-range cruise missiles. “DRDO has spent around $4.5 million on its [HTDV] prototype development cost, and three more tests will be carried out in the next five years to make this platform into a full-fledged hypersonic weapon that is capable of carrying both conventional and nuclear warheads, “he said.

DRDO spent about $30 million on the design and development phases.

India is also developing the hypersonic BrahMos II missile.

Japan

This Japanese-language graphic shows the country’s two planned hypersonic weapons: (1) the hypersonic cruise missile and (2) the hypervelocity gliding projectile. (Japan’s Acquisition, Technology and Logistics Agency)

The northeast Asian nation of Japan started its pursuit of hypersonic weapons in the late 2010s. It has set its sights on two classes of hypersonic systems: the hypersonic cruise missile, or HCM, and the hypervelocity gliding projectile, or HVGP.

The former will be powered by a scramjet engine and appears similar to a typical missile, albeit one that cruises at a much higher speed while capable of traveling at long ranges.

The HVGP, on the other hand, will feature a solid-fuel rocket engine that will boost its warhead payload to a high altitude before separation, where it will then glide to its target using its altitude to maintain high velocity until impact.

The government’s Acquisition, Technology and Logistics Agency also provided details regarding warhead payloads, with different warheads planned for both maritime and land targets. The former will be an armor-piercing warhead designed specifically for penetrating “the deck of the [aircraft] carrier,” while a land-attack version will use multiple high-density, explosively formed projectiles for area suppression.

Japan’s government is continuing research and development in hypersonic technology, with 240 billion yen (U.S. $2 billion) in its latest defense budget allocated for the program. ALTA has contracted Mitsubishi Heavy Industries to collaborate on research in both the HCM and HVGP, with the latter expected to enter service around 2026.

ATLA says research on the HCM is planned to continue until 2025, although at this time it is not guaranteed that it will be developed into an operational system. Japan, whose constitution limits the ability of its self-defense forces to conduct offensive operations, has framed the development of its hypersonic weapons as a means by which it can provide defense for “remote islands.” The country is likely referring to the Senkaku Islands in the East China Sea, which it currently administers but are also claimed by China.

Korean Peninsula

The divided Korean Peninsula is also racing to develop hypersonic weapons. U.S. ally South Korea is pushing ahead with plans to develop its own hypersonic missiles as it seeks a viable missile strike capability in response to North Korea’s extensive ballistic missile arsenal. That arsenal remains the one area in which the impoverished, isolated nation’s military has surpassed its southern neighbor.

In August 2020, South Korean Defense Minister Jeong Kyeong-doo said the country will accelerate development of long-range and hypersonic missiles, as well as more powerful warheads for such weapons. South Korea has already developed short-ranged ballistic missiles and is seeking newer types to hold North Korean targets — including its mobile ballistic missiles — at risk during a conflict.

For its part, the nuclear-armed North has claimed it is also developing such weapons. The government made the announcement during the 8th Congress of the Workers’ Party of Korea in January, with reports saying the North has created a new research center for hypersonic missiles under its Academy of National Defense Science.

However, there is little verifiable or detailed information available about the development of hypersonic weapons by both the countries at the moment.

Australia

In July 2020, the Australian government released two defense documents that together provide midcourse guidance to the country’s 2016 Defence White Paper and its Integrated Investment Program. Included in the new documents are a AU$9.3 billion (U.S. $7.1 billion) investment in hypersonic weapons and the further development of capabilities such as directed-energy systems.

As such, the 2020 Defence Strategic Update and associated Force Structure Plan will oversee funding to develop disruptive weapons technology. The effort follows a pledge of AU$730 million in the earlier whitepaper for research into targeted science and technology, including hypersonic weapons, advanced sensors and directed-energy capabilities.

Acknowledging the rapidly changing balance of power in the Asia-Pacific region, the strategic update notes that previous defense planning does not provide adequate assurance that Australia would come out on top in a modern conflict.

“Coercion, competition and grey-zone activities directly or indirectly targeting Australian interests are occurring now,” the document stated. “Growing regional military capabilities, and the speed at which they can be deployed, mean Australia can no longer rely on a timely warning ahead of conflict occurring.”

While the government still considers the prospect of a high-intensity conflict in the region unlikely, it noted the chances are less remote now than five years ago, including conflict between the U.S. and China. The reduced warning time, coupled with a realization that Australia no longer has the luxury of choosing when or where military action occurs, is driving future weapons requirements, such as rapid threat detection and response as well as greater standoff capabilities.

“That’s why we will continue to invest in advanced capabilities to give the Australian Defence Force more options to deter aggression against Australia’s interests, including the $9.3 billion earmarked in the Force Structure Plan 2020 for high-speed long-range strike and missile defence, including hypersonic development, test and evaluation,” Defence Minister Linda Reynolds said.

Australia has conducted research into hypersonic flight for several years, most notably through the Hypersonic International Flight Research Experimentation program, or HIFiRE, which began in 2007. The program was a collaboration between the government’s Defence Science and Technology Group, the University of Queensland, the U.S. Air Force Research Laboratory, and industry partners BAE Systems and Boeing.

The aim of HIFiRE was to gain a deep understanding of the technologies required for sustained hypersonic flight and solve related scientific problems. In defense terms, HIFiRE has been succeeded by the Australia-U.S. Southern Cross Integrated Flight Research Experiment program, or SCIFiRE, announced in December 2020.

Australia’s investment in SCIFiRE comes from the AU$9.3 billion promised in the Force Structure Plan. The program aims to develop and test a hypersonic cruise missile prototype, leveraging work done with the U.S. over the last 15 years on scramjets, rocket motors, sensors and advanced manufacturing materials.

The weapon will be a propulsion-launched, scramjet-powered, precision strike missile able to reach Mach 5. It is expected to enter service in the late 2020s or early 2030s.

The joint effort was finalized in July 2020 and announced in December that year by Reynolds.“The SCIFiRE initiative is another opportunity to advance the capabilities in our Air Combat Capability program to support joint force effects to advance Australia’s security and prosperity,” chief of the Royal Australian Air Force, Air Marshal Mel Hupfeld, said at the time of the announcement. “We are maximizing our learning during development to better define the capabilities and needs as the system matures, and we are gaining insights as we go that will help us integrate it into the future joint force.”

While the Australian Defence Force is closely watching developments, it is yet to publicly announce a formal hypersonic weapons acquisition program. However, the Force Structure Plan forecasts Australia’s clear desire for a high-speed, long-range strike and missile.

The Defence Ministry did not provide comment to Defense News by press time.

Another disruptive weapons capability specifically named in the Force Structure Plan is the development of a directed-energy weapons system. It’s to be integrated into the military’s protected and armored fighting vehicles for defeating vehicles as big as a main battle tank.

The plan also forecasts a similar capability to protect naval vessels against advanced and emerging weapons systems.

Australian defense company Electro Optic Systems has more than 35 years’ experience in the use of lasers through its so-called Space Domain Awareness service, which provides a tracking capability in space for Australia and its allies. The company is also developing a scalable, directed-energy counter-UAV weapon for the Australian Defence Force, initially based on a 26-kilowatt continuous wave laser. It’s expected to enter service later this year. The technology can supposedly be scaled up to provide a theater-level capability should a future military requirement emerge.

Pakistan

The present level of development in directed-energy and hypersonic weapons by Pakistan is uncertain, and despite a greater focus on strengthening local industry, the country may require significant foreign input in these fields.

In October, outgoing naval chief Adm. Zafar Mahmood Abbasi revealed plans to equip future warships with directed-energy weapon systems and the P282 hypersonic missile.

“In the hypersonic domain, the ship-based, long-range, anti-ship and land-attack P282 ballistic missile is under development” he said at the time, and the newly established Naval Research and Development Institute was developing “laser-based directed-energy weapons.”

Neither the Ministry of Defence Production nor the Navy responded to Defense News’ requests for information on these programs. Their stage of development or how and when they will be employed is unknown. Nevertheless, Mansoor Ahmed, a senior research fellow at Islamabad’s Center for International Strategic Studies, believes these developments must be reasonably advanced for them to have been revealed at all.

Whether Pakistani warships have sufficient power-generation capacity to operate directed-energy weapons may be inferred from Chinese and Turkish programs. Pakistan has ordered Type 054A/P frigates (similar to those in Chinese service) and Milgem corvettes (similar to Turkey’s Ada class), and is designing the related Jinnah-class frigate (possibly similar to Turkey’s Istanbul class).

Chinese destroyers have had an operational directed-energy capability since at least 2018, but frigates are not similarly equipped. However, an expert on China’s military believes this will change.

“Based on my interviews with Chinese sources, I conclude that China will be pacing most U.S. directed-energy weapon developments, be they solid-state lasers or microwave weapons,” said Richard Fisher, a senior fellow at the International Assessment and Strategy Center. “They were marketing a 30-kilowatt, mobile, solid-state laser weapon five years ago, so it is reasonable to expect they will soon have much more powerful land-, sea- and air-deployable laser weapons.”

Similarly, the installation of the Roketsan-made Alka laser weapon on Turkish warships would infer Pakistan receiving a similar setup. Roketsan literature indicates the Alka can be fitted to warships to destroy or disable drones and similar targets. The company says the system can destroy a target with a laser at 500 meters, and destroy a target at 1,000 meters with its electromagnetic weapon.

STM and fellow Turkish contractor Afsat signed an agreement “on engineering solutions for supplying and integrating the main propulsion system” for Pakistan’s corvettes in June 2020. Their propulsion/power-generation system was previously a CODAD (combined diesel and diesel) system before the U.S. cleared the export of gas turbines, allowing a CODAG (combined diesel and gas) system similar to the Ada corvettes to be fitted.

When asked, STM would not say whether this could produce sufficient power to support a directed-energy weapon.

Given the delivery timetable for Pakistan’s new frigates and corvettes, a directed-energy capability may be reality by mid-decade, but Ahmed, the expert at the Center for International Strategic Studies, believes the hypersonic program is more urgent. He said hypersonic technology is part of Pakistan’s “emerging menu of long-range [anti-access, area denial] capabilities that are increasingly going to be needed for maintaining a credible deterrent” against India’s Navy.

This is backed by reports that an Azeri surface-to-air Barak-8 missile system — a weapon also installed on some of India’s destroyers — downed an Armenian Iskander tactical ballistic missile last year, potentially rendering Pakistan’s present subsonic anti-ship missile arsenal vulnerable to interception.

Though Pakistan has acquired CM-302/YJ-12 supersonic anti-ship missiles for its Type 054A/P frigates, Ahmed said the hypersonic P282 will enable Pakistan to “leapfrog” to a similar level of capability to India, which already has different BrahMos supersonic missile variants and is developing the hypersonic BrahMos II.

Irrespective of whether the P282 will be a wholly indigenous or collaborative effort, Ahmed views it as a critical program that will spawn land and air weapons potentially “deployed across a variety of platforms.”

However, this could depend on whether the weapon is a hypersonic cruise missile (a la Russia’s Zircon) or some type of hypersonic glide vehicle. Describing the P282 as a ballistic missile may imply it is more likely to be a land-based hypersonic glide vehicle (like China’s DF-100), or perhaps a ballistic missile acting as a booster for a scramjet-powered hypersonic cruise missile. Adm. Abbasi’s description of the P282 is the only information presently in the public domain.

According to James Acton, co-director of the Nuclear Policy Program at the Carnegie Endowment for International Peace, a ship-based ballistic missile is most feasible. “I don’t know anything about the P282 specifically, but a ship-based ballistic missile is perfectly possible. Indeed, India has such a missile — the Dhanush.”

Like the Dhanush, he suspects the P282 will turn out to be similar to the Chinese DF-21D and DF-26B anti-ship ballistic missiles.

“It’s possible — likely, perhaps — that the missile would have some kind of a maneuverable reentry vehicle, though I’d be surprised if it had a long-range gliding capability,” he added.

Acton also highlighted the launch platform doesn’t need to be a surface vessel. “It’s also worth bearing in mind that a submarine is a type of ship, and so it’s possible that the delivery platform would be a submarine rather than a surface ship.”

He is less convinced the P282 will end up being a hypersonic cruise missile. “Given the description, I’d doubt it’d be a cruise missile. Small rocket boosters are used to accelerate scramjet-powered missiles, but it’d be very odd to describe the system as a ‘ballistic missile.’ „

The expert at the International Assessment and Strategy Center suspects China as a direct source of the P282, saying it’s reasonable to believe China would sell directed-energy weapons and ship-launched, anti-ship ballistic missile technology to Pakistan just like it “would also assist North Korea and Iran to obtain the same capabilities.”

“In 2017, retired [Chinese People’s Liberation Army] Navy Rear Adm. Zhao Dengping revealed that the PLAN was working on a ship-launched, anti-ship/land-attack ballistic missile, and my sources indicate that by 2018 they had started testing such a missile” Fisher added. “It could be based on a current surface-to-air-missile or something larger, as they have anti-ship-capable versions of some of their newer short-range ballistic missiles.”

One candidate in particular was shown at the 2018 Zhuhai Airshow in China, he said, where the country revealed the CM-401 horizontally launched anti-ship ballistic missile made by China Aerospace Science and Industry Corporation. “As it is a ship-launched, hypersonic-speed ballistic missile and Pakistan has a long relationship with CASIC, there is a good possibility that P282 will be next in the long line of Pakistan’s CASIC-assisted solid-fuel ballistic missiles.”

If so, fielding a hypersonic missile capability may not be Pakistan’s greatest challenge. Ahmed points to Pakistan’s need to fill a “real-time target acquisition” gap to address India’s aircraft carrier fleet and other major surface combatant forces, especially as “India’s offensive and [intelligence, surveillance and reconnaissance] ISR superiority in the naval domain has been enhanced through the India-U.S. basic exchange and cooperation agreement.”

Pakistan’s planned Sea Sultan long-range patrol aircraft as well as its access to China’s BeiDou satellite navigation network will likely be critical to its hypersonic efforts. Nevertheless, “given these growing asymmetries, the P282 is a much-needed addition to an increasingly complex offense defense imbalance in the Indian Ocean region,” Ahmed said.

Hypersonic and directed-energy weapons: Who has them, and who’s winning the race in the Asia-Pacific? (defensenews.com)

Ein Artikel von The Diplomat 2022 thematisiert DEW in China, gibt zu, dass darüber recht wenig bekannt und erfahrbar ist, wohl auch geheim gehalten wird, doch auch seitdem und bis  2024 hat China noch keinen wesentlichen Durchbruch, den es der Welt wie Brexit- Global Britain stolz vorgeführt hätte. Interessant ist aber, dass es scheinbar von der KP China Vorbereitungen gibt, auch den Weltraum mit DEWs zu militarisieren, nachdem es dies auch schon den USA vorwarf. Kommt jetzt eine chinesische Variante von Reagans Star Wars?

“China’s Directed Energy Weapons and Counterspace Applications

China’s non-kinetic physical anti-satellite weapons, including DEWs, will play a critical part in future warfare.

By Oskar Glaese

June 29, 2022

China’s soon-to-be-completed space station has garnered much media attention as a symbol of Chinese power projection into space. In comparison, little attention has been paid to more secretive developments involving Chinese directed energy programs recently exposed by the Secure World Foundation. Yet these will play just as vital a role in China’s ambitions to be a leading space power.

In recent years, China has stepped up its military activities in space in support of the leadership’s ambitious goal to field a “world class” military by 2050. The People’s Liberation Army (PLA) seeks to develop capabilities to asymmetrically challenge U.S. space superiority. Counterspace missions, underpinned by the use of counterspace weapons – whether kinetic physical, non-kinetic physical, electronic, or cyber – play an important role in Chinese military thinking in this regard. While China is moving to cyber and electronic means as preferred attack vectors in space, its interest in non-kinetic physical directed energy weapons (DEW) may pose a longer-term threat because of short warning time and the absence of counter-measures.

China currently possesses ground-based DEW systems, although their exact capabilities remain unknown, and is moving to develop space-based platforms as well. Technological innovation within China is indicative of the PLA’s ability to overcome technical challenges to fielding militarily useful DEW systems in the near future. If successful, the PLA will be able to limit the ability of U.S. forces, highly reliant on satellites for a range of military applications, to operate within the Indo-Pacific, a significant concern for policymakers when it comes to future warfighting scenarios between the U.S. and China.

The Role of Non-Kinetic Directed Energy Weapons

While Chinese kinetic anti-satellite (ASAT) capabilities, such as its 2007 direct ascent ASAT missile test, have made headlines in the past, future military operations in space will likely witness a shift to non-kinetic means of asymmetrically disrupting U.S. space operations. The reason is collateral damage: employing kinetic ASAT capabilities to destroy satellites in orbit leads to clouds of space debris, threatening satellite constellations of both sides and beyond. In comparison, non-kinetic counterspace assets offer a less risky alternative for China to achieve its counterspace objectives. Indeed, Chinese strategists view non-kinetic ASAT capabilities as “reversible,” i.e. non-destructive, and therefore less escalatory in a potential military crisis.

While cyber or electronic warfare operations represent viable options to disable adversarial space assets, DEWs are a military capability of growing importance for warfighting in space. DEWs – including technology such as high-powered lasers, high-powered microwave, millimeter wave emitter, or particle beam weapons – use concentrated electromagnetic energy to attack enemy systems and platforms.

Today’s generation of solid state or hybrid gas-solid state lasers are capable of producing far higher degrees of power and energy than their gas-based predecessors, thereby increasing their military utility. Low-powered lasers can be used to blind or disable satellite electro-optical sensors, with higher powered lasers theoretically capable of destroying entire satellite systems. Another important military application of DEWs includes the destruction or jamming of communications equipment through high-frequency microwave emissions.

Inadequate defenses or countermeasures, coupled with lack of warning time given the speed of DEW strikes, give the systems considerable usefulness for offensive counterspace missions. Defensive applications, such as space-based ballistic missile defense, are also under development and are likely to be a key capability of future military arsenals. DEWs are being developed by states such as the United States, China and Russia.

China’s DEW capabilities 

The PLA’s Strategic Support Force is rapidly developing the technological capabilities required to field DEW systems for concrete counterspace applications in the near future, leading some analysts to express concern that U.S. satellites are becoming increasingly vulnerable to Chinese DEWs. While China’s DEW programs were mostly likely funded through the 863 Program until 2016, details on current DEW systems and programs remain sparse given their sensitive military nature. Nevertheless, a 2022 U.S. Defense Intelligence Agency report concluded that the PLA is already in possession of ground-based lasers systems with varying degrees of power. Open source evidence has found at least four or five main sites housing such systems.

Doubts persist as to whether ground-based lasers currently offer enough military utility for counterspace application. A major technical hurdle has been the levels of power required to significantly affect satellites in orbit, or even to penetrate through the atmosphere. The accuracy of DEWs at such large distances, as well as the difficulty of verifying whether DEW strikes were effective in damaging or disabling adversary satellites, remain challenges to fielding effective ground-based lasers for counterspace applications.

Nevertheless, Chinese ground-based DEWs will likely become more capable for two overarching reasons. First, the power outputs of Chinese DEWs will increase rapidly in coming years. Recent scientific breakthroughs by Chinese researchers in the use of relativistic klystron amplifier technology demonstrate that future DEW systems will likely be far more powerful than those currently in operation. An ongoing project by researchers in Shanghai, who claim they will be able to fire a 100-petawatt laser shot by circa 2023 – an output more than 10 times the capacity of the world’s largest nuclear power plant – only highlights this trend.

Second, advancements in enabling technology will also increase the efficacy of Chinese DEWs for counterspace missions. A team at the National Defense Technology University is reported to have developed a radar that will allow the tracking and observation of objects in near earth orbit up to a resolution of 3mm. Besides the cited civilian application of allowing the accurate destruction of space debris, the technology has extensive military applications such as the accurate targeting of satellite systems or facilitating damage assessments of ASAT strikes to support ground operations.

China’s Co-orbital DEW Ambitions

The PLA will further seek to develop and field co-orbital DEW weapons, if it has not already begun doing so already. Indeed, authors at the Changchun Institute of Optics, Fine Mechanics and Physics, a leading research institution for the development of laser technology within China, proposed already in 2013 that space-based laser weapons were feasible for Chinese warfighting capabilities by the mid-2020s.

Co-orbitally deployed DEWs offer significant advantages over ground-based systems. With smaller distances to satellites in orbit and without the need to penetrate the atmosphere, power requirements for space-based systems would be significantly lower. Additionally, space-based systems offer a defensive capability to protect space assets from adversary ASAT attacks.

Yet these systems come with significant technical challenges, such as miniaturization and enabling small energy sources. Space-based systems will need to be significantly smaller in both size and weight than ground-based systems to be installed on orbiting satellites.

Recent Chinese technological advancements addressing these technological shortcomings are notable. In December 2021 a Chinese research team is reported to have developed a 1 megawatt pulse laser device weighing below 1.5 kilograms, thus making it possible to field the device on a relatively small satellite in space. Given the rapid speed of technological innovation in this field, co-orbital DEW systems might become feasible for military deployment within the next two decades. With conservative estimates placing China’s spending on its civil space program at $8.9 billion and funding increasingly being allocated to R&D efforts, support on a national level to overcome these hurdles through technological innovation certainly exists.

A New Threat?

The PLA’s focus on DEWs to counter U.S. space superiority is in line with overall Chinese efforts to attempt to  asymmetrically contest U.S. forces across all warfighting domains, while avoiding large-scale kinetic engagements. As the PLA’s R&D effort on DEWs suggests, future military operations in space will depend less on the use of kinetic ASAT weapons systems and more on a host of non-kinetic capabilities, of which DEW systems will be a prominent part. How quickly the PLA will be able to field DEW systems, whether ground- or co-orbital-based, will depend on finding solutions to several technical challenges including lack of precision and inadequate power sources for sustained military operations. The successful fielding of Chinese DEW systems would thwart the ability of the U.S. forces to operate in the Indo-Pacific, a development that will have a significant impact on any future warfighting scenarios between the two powers as great power rivalry in the region heats up.

China’s Directed Energy Weapons and Counterspace Applications – The Diplomat

National Defense verweist auch auf eine Studie der The Secure World Foundation „Global Counterspace Capabilities: An Open Source Assessment,“, die als Download gegoogelt warden kann. Autor und führender Kopf der Stiftung ist Brian Weeden, der schon in den 2000er in einer Debatte, ob China einen Weltraumkrieg gewinnen oder verlieren auffiel. Hier nun neben befürchteten weltraumgestützten DEW-Systemen auch von einem erdgestützten DEW-System die Rede, das auch Satelliten herunterholen kann.

JUST IN: Studies Shed Light on Chinese Directed Energy Efforts

4/8/2021
By Mandy Mayfield

China is making progress with its ground-based directed energy weapons that could potentially be used to take down satellites, according to analysts.

The Secure World Foundation recently released a study, „Global Counterspace Capabilities: An Open Source Assessment,“ which looked at Beijing’s efforts.

In the study, “we added a lot more details about what China has been doing with their ground-based direct energy weapons program,” said Brian Weeden, director of program planning at the Secure World Foundation. “There’s now pretty good open-source evidence of four or five main sites” that house the technology.

All of the sites have distinctive large buildings with roofs that slide back, Weeden noted April 8 during a virtual panel hosted by the Center for Strategic and International Studies, which recently released its own study on counter-space weapons. There are smaller buildings next to the large ones that can be used for gas storage to power the lasers. In some cases, the buildings have additional smaller domes that support adaptive optics for targeting objects, Weeden said.

Two of the facilities identified are co-located with universities where the Chinese appear to be conducting research for atmospheric optics or engineering physics, he said.

CSIS released its new „Space Threat Assessment“ report on April 1, which outlines recent developments in anti-satellite weapons by China, Russia and other countries.  

“While some of the programs identified appear to be academic and therefore are likely not ASAT systems, one location of primary concern is a military base known for conducting kinetic physical ASAT tests that is also rumored to house a laser weapon system,” the report noted. “There is no indication of how advanced or ‘ready-to-mobilize’ such a directed energy system may be, and there has been no publicly available information about potential tests or attacks against space systems.”

This site, which appears to be a military installation, is located about 100 kilometers from a base outside of Korla, China, Weeden said. The government has conducted anti-satellite testing out of this base in the past, he added.

While the other sites located near universities could be used for research-and-development purposes, the location of this facility indicates it may be intended to house operational systems, Weeden noted.

Study Sheds Light on Chinese Directed Energy Program (nationaldefensemagazine.org)

Eine weitere interessante Studie von 2020  ist  auch wiederum von Brian Weeden, der sich mit den verschiedenen Typen von möglichen chinesischen Weltraumwaffen, auch DEWs in der Studie „Current and Future Trends in Chinese Counterspace Capabilities“ , wobei hier auch einmal die Bedeutung für Europa und transatlantischen Beziehungen als auch Raum thematisiert wird und von dem International French Institute of International Relations (IFRI) in Paris unterstützt wurde

Current and Future Trends in Chinese Counterspace Capabilities (ifri.org)

Kommentare sind geschlossen.